
INTERACTIONS AN D RELATIVITY

E.'=( '"/v' )(f""E.—0&*),

E,'= (e '~'/Qcc) (F'"E.+PB„), (34c)

B '=B, (35a)

8 '= (e'"/Qn) (F'i'B +PEc) (35b)

&*'= ( '"/V' )(P"& PE.)— (35 )

The transformed 6elds for the antiparticle can be ob-
tained in a similar manner. Because of the difference be-
tween the matrices Bz and Bzz, a different result will be
found. This shows dearly that, according to this
generalization of special relativity, particles and their
antiparticles have diferent transformation properties.

Notice that, depending upon the sign of 5, the trans-
formed electric and magnetic fields will be damped or
augmented by the factor e ~~2. This prediction could

method. Since both approaches lead to the same result,
the latter procedure will be followed here.

Using F„„'=G„G„ppp, where Ii„„is the electromag-
netic field-strength tensor, one obtains

(34a)

perhaps be checked by using Eqs. (34a), (34b), (34c)
and (35a), (35b), (35c) in the consideration of very
dense and highly energetic plasmas.

Vm. COHCLUSXON

Although the theory of relativistic interactions pre-
sented here lies outside the realm of current research,
it appears to be a reasonable generalization of special
relativity. Not only are the predictions of special and
general relativity included as special cases, but also a
host of new effects are predicted, all of which seem to be
within range of present experimental techniques. From
a theoretical point of view, the theory suggests that (a)
classes of elementary particles possess distinct space-
time transformations, (b) the existence of matter and
antimatter is a relativistic eGect independent of the
quantum theory, and (c) for strong interactions new
forms of the Dirac and Klein-Gordon equations should
be used.
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An analysis is given of the stress-energy tensor and geometry produced by slowly rotating bodies. The
geometrised mass GM/cs of the body is allowed to be comparable to its radius. The geometry is treated as a
perturbation of the Schwarzschild geometry, which leads to considerable simplilcation of Einstein s equa-
tions. The rotation of the intertial frame induced by a rotating massive shell is calculated and discussed with
particular attention to two limiting cases: (1) For small masses it reduces to Thirring's well-known result;
(2) for large masses, whose Schwarzschild radius approaches the shell radius, the induced rotation approaches
the rotation of the shel/. These and the corresponding results for an expanding and recollapsing dust cloud
are examined for their consistency with particular interpretations of Mach s principle. The analytic ex-
tension of the rotating exterior metric is a completely source-free rotating solution. It describes a slowly
rotating, expanding, and recontracting Einstein-Rosen bridge which can be taken as a geometrodynamic
model for a slowly rotating body.

I. INTRODUCTION
' N 1686, Newton' published his famous discuss~on of
- ~ inertial forces on a Ruid contained in a rotating
vessel. This discussion was critically re-examined by
Mach' in 1883 in an attempt to understand better how
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Press, Berkeley, California, 1960), p. 10.
'E. Mach, The Science of Mechanics (Open Court Publishing

Company, La Salle, Indiana, 1902), p. 232.

inertial forces arise. He suggested that the shape of the
water-surface may depend on the rotation of the vessel
"if the sides of the vessel increased in thickness and
mass till they were ultimately several leagues thick. "
A calculation of such e8ects became possible when
Einstein formulated his general theory of relativity
in 1916, and was carried out in 1918 by Thirring.
Using the weak-field approximation to Einstein s
equations, Thirring found that a slowly rotating mass
shell drags along the inertial frames within it. Due to

' A. Einstein, Ann. Phys. 49, 769 (1916).
4 H. Thirring, Physik. Z. 19,33 (1918);22, 29 (1921).
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the approximations used, Thirring's result is valid only
when the induced rotation is small compared to the
rotation rate of the shell. Since that time various
authors' have stressed the importance of obtaining a
strong-6eld solution, because these induced rotation
efFects can be viewed as a manifestation of Mach's
principle in general relativity.

Today, it is still a matter of controversy how to give a
precise formulation of Mach's principle, and whether
general relativity includes Mach's principle, or needs
to be supplemented by boundary conditions, or must
be modi6ed in order to be consistent with this principle. '
However, there is general agreement that the dragging
along of inertial frames by rotating masses is a Machian
efFect. In particular, for mass shells comprising more
nearly all the matter in the universe than those treated
by Thirring, Mach's principle suggests that the inertial
properties of space inside the shell no longer depend
on the inertial frames at in6nity, but are completely
determined by the shell itself.

In this paper we study the efFect on inertial frames of
arbitrarily large masses rotating slowly. Instead of
Rat space, a static metric ("base metric") is used as the
lowest order term of an approximation expansion in
the angular velocity of rotation ~,. A general pertur-
bation away from a static metric would give rise to
various modes of gravitational radiation, ' and therefore
show secular efFects in higher orders. Here we con6ne
attention to perturbations of suSciently high symmetry
that the resulting metric is stationary. Such pertur-
bations exist only for very special base metrics, such
as the spherically symmetric ones considered in this

paper, and axially symmetric metrics in general.

Our model of Newton's vessel is a spherical shell of
matter. To first order in co, the space inside the shell is
Qat, so that extended inertial frames can be de6ned

there, and compared with the inertial frames at in6nity.
By matching this interior solution to an exterior
solution, we will obtain the induced rotation rate 0 of
the inertial frames.

The exterior 6rst-order solution itself is of interest,
because it can be analytically continued abnost as far
as the Schwarzschild solution can be continued. The
result describes a rotating Einstein-Rosen bridge, a
solution of the source-free equations exhibiting mass

SSee, e.g., R. H. Dicke, in I'elan'city Groups and Topology
(Gordan and Breach Science Publishers, j:nc., Neer York, 1964);
J. A. Wheeler, ibid.

~ I'or an example of a general perturbation on a nonQat base
metric, see D. Brill and J. Hartle, Phys. Rev. 135, 3271 (1964).
R. Bach, Z, Math. D, 119 (1922) performed a first- and second-
order perturbation expansion with the Schvrarzschild metric as
the base metric. His perturbations correspond to stationary
rotation in the exterior region, and the form of the solution in
first order agrees mth the results of the present paper. However,
Bach does not discuss the interior solution and uses Thirring's
expression to connect the integration constants in the metric
vrith the parameters of the source. Therefore, the dragging along
of the inertial frame cannot be deduced from his vrork to any
higher accuracy than from that of Thimng.

and angular momentum. Just as the analytic extension
of the Schwarzschild solution is no longer static but
shows an expanding and recollapsing throat, the corre-
sponding rotating solution shows a time dependence.
The perturbation increases to in6nity as the throat
collapses, and therefore is a valid approximation only
during the expanded stage. Thus the present analysis
cannot answer the question whether rotation will stop
collapse.

IL NONROTATING BASE METRIC

The base metric is the Schwarzschild solution,
written here in isotropic spherical coordinates:

ds'= $4(dr'+r'd8'+r' sin'8d4P) —V'dto. (1)

In the exterior, source-free region, P and V have the
form

f=1+n/r,
V= (r n)/(r+n—),

where o,= ~~ms. In order to facilitate physical interpre-
tation and to expedite the calculations, the ortho-
normal Cartan frame components of ul/ tensors will

be used. A convenient set of these frames is

euP= VCh,

cv'=@dr,

sP=nPd8,

sP=nP sin8dg.

For any spherically symmetric shell of radius fp& and
thickness small compared to rp, the interior is Bat
space; the values of f and V are determined by con-

tinuity and the 6eld equation

G~= 4V'P/P=S~P—.
One 6nds

(4)

(5a)

P= 1+n/ro

V= («—n)/(«+n)
(Sb)

III. ROTATING METRIC

Consider the perturbation of the isotropic Schwarzs-

child metric, for a thin massive shell (suggested by
Thirring's weak field result),

ds'=iPLdr'+r'd8'+r'sin'8(dy —Q(r)dh)'$ —V'dP. (6)

A convenient orthonormal set of Cartan frames is

cP= VCh,

a)'=iPdr,

aP = rtPd8,

(o'= riP sin8(~ —0(r)dt) .
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If the metric (6) is transformed to a system rotating
with angular velocity 00 about the Z axis, it has the
form (6) with Q(r) replaced by Q(r) —Qe. Hence we can,
and always will in the following, set

Q(~) =0.
Then Q(r) describes a local rotation of the inertial
frames with respect to in6nity.

IV. STRESS-ENERGY TENSOR FOR
THIN SHELL

The distribution of elastic stresses in a nonrotating
shell is completely determined by the Einstein 6eld
equations. Integration of the equation

For a spherical shell rotating about the s axis the
expression for I& becomes

No=(1 —~2)-»2, Ii=12=o, Ne=~/(1-~)'ts, (17)

where o =nP sin8(ce, —Q)/V.
For two of the vectors v(;~& ere choose unit vectors

along the co& and ~2 directions, which are automatically
orthogonal to each other and to I&; the remaining

vector is then uniquely determined by orthonormality
and the requirement that it be parallel to. the third
Cartan basis vector in the limit of no rotation.

sit) &= (0,1,0,0),
& &2&

"=(0 0 1 0) 3

, , = (,0,0,1)/(1—cr')' '.

across the thin shell yields

pll —O

Integration of the equation

across the shell yields

Many of the components T~" vanish owing to the reflec-
tion symmetry about the equatorial plane (e~ tr —0)

(10) and time-reversal symmetry (f~ —t, $~ —cf'3

ot, -o —&e„Q—+ —Q). We conclude that (a) the elastic
stress tensor pt' is diagonal, (b) P" and T'& are even

(11) functions of &e,—Q, and (c) T 4 are odd functions of
&e,—Q. Equationa(15) now gives, correct to 6rst: order,

T"=p&r/2 (re cr)— (12)

Here p is the mass density in the rest frame of an
element of the shell. Similarly we obtain

since
(ref')rl'8 1 (nP) i

G22 —G38 — + + (14)
rf"- P -i

@&here subscript j. denotes differentiation with respect
to r.

The stress-energy tensor for the same shell when it is
rotating with angular velocity ro, has the form

Ta"=pgaN"+ g f"8& laeO&".

I"=L&e"/drja&ong motion (16)

Computation offour-velocity in Cartan frames. Let the motion
of a particle be described in parametric form, xo=xo(r), where r is
the arc length along the path. The holonomic components III&
of the four-velocity are deaned by

@~I'=dw//dr. (A)
Let e„be the natural basis associated with the coordinate system
and let co, be the orthonormal basis of the Cartan frames. The

Here p is again the rest mass density, and e~ the velocity
four vector, of an element of the shell; the v(;)& form a
triad of orthonormal vectors spanning the hyper-
surface orthogonal to I&. T&" must have this form
because in the rest frame of the matter the momentum
density T" should vanish. The Cartan-frame corn-
ponents of the velocity four-vector are given by~

T ~=P2,

+33—PI

T88 ( +f88)~

and from the zeroth-order result we haves

t"= f88= pcc/2(re —
o&)

=pP (def'tnition of P) . (19a)

two are related by some linear transformation

co=co@ceo (x) (S)
The four-vector u can now be expressed in two ways:

u=e„terra=e„dxo/dr =c w„'(x)dxo/dr =co,e" (C).

Comparison of the two expressions yields the Cartan frame
components of the velocity four-vector,

24" cra'(x)dxo=/dr (D)
Since

(E)oca"(x)dxo =co"

we can write Eq. (D) symbolically as

44 =Eco /dr go&one motion (E)
Here eo" does not have its usual meaning of a diGerential form
(viz. , dual basis to the co„), but is the same expression in terms of
the coordinate diGerentials. (Alternately, de6ne for each point
four functions f&"& such that teeatty df&"&=c' , then te is th. e
derivative df/d~ at, that point. ) Thus we 6nd, for example,

tee=cot/dr &op sin8(d&=t Qdt)/(V'dtt —Hp4 sint8(dct——Qdt)2)»

=rid Sin8(CO, —Q)dt/$1 —r+4 Sin'8(co, —Q)'/Veg'ctVdt,

where we have put 4p/dt =~,.
8 This result shows that Thirring (Ref, 4) was correct in neglect-

ing the elastic stress T'& in the shell to 6rst order in ~, for slow
rotation and small masses producing weak gravitational 6elds.
However, for large masses, t'& must be large in order to prevent
collapse of the shell, and makes the largest contribution to the
angular momentum of the shell. Also see L. Sass and F. A. E.
Pirani, Phil. Mag. 46, 850 (1955).
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V. THE INDUCED ROTATION

The Einstein equations, evaluated to first order in
~„ for metric (6) and source tensor (19) reduce to
five field equations, four of which are identical with
those for the nonrotating shell. The one remaining field
equation

8~&"=G"=—P(r'PQr/2V) r+ (g') t«t/V3
)& sin8/riP4 (20)

determines Q(r): for r&rp, p vanishes and the equation
has the first integral

VI3

a =(i/s)ro

Q, = K'/(gs)4, (21)
0

0 2
r/u

E(r'ltaQr/2 V)r+ H )rrQr/Vjdr

=8pr Q(1+P)r P(pp, —Q)/V jdr. (25)

Here the limits of the region containing the mass are
denoted by —and +.

The second term of the left integral (25) goes to
zero, and we find

K= —4m(1+Po)(ropes)ti'o(ep —K')/Vo. (26)

Thus 0 is completely determined in the exterior and
interior of the shell,

(«6'/rP)'~.
r&rp.

1+I3(ro—n)/4m(1+Po) j
.cu,/(1+p(rp —er)/4m(1+pp) j), r(rp.

For small n the result for the interior reduces to

Q=ep, (4m/3rp),

in agreement with Thirring's well-known result.

(27)

(28)

V. DISCUSSION

Figure 1 shows a graph of Q(r)/co, for shells of various
radii rp but identical total shell mass. As the shell mass u
increases compared to the shell radius rp, the dragging

where E is an integration constant. Another inte-
gration, using the boundary condition (8), Q(oo)=0,
yields

Q= K/—3(rP)s r) rp. (22)

In the interior of the shell, the only regular solution is
constant rotation,

a=@' r(rp. (23)

Continuity across the shell requires

K'= —K/3 (re/os) s (24)

The subscript zero denotes that the quantity is evalu-
ated at the shell where r=rp. Integrating Eq. (20)
across the thin shell yields

Fzo. 1.Ratio of induced rotation 0 of inertial frames to rotation
co, of inducing shell as a function of distance r from the center.
Curves are plotted for shells of various radii ro but the same total
mass. The curves coincide in the exterior region due to this
normalization of total mass. pitrote added iN proof These cu.rves
coincide only if the ordinate is multiplied by a suitable factor,
which is different for each curve. The value 1 shown on the ordi-
nate is correct only for the curve labeled a =ra. The correct scale
for the other curves can be obtained from Eq. (27) and the
definition of Po, Eq. (19a). A similar comment applies to Fig. 2.j
In the interior, "perfect dragging" (0/co, —+ 1) is obtained in the
limit shell radius —+ gravitational radius corresponding to shell
mass. The physical shape of the curved space t =const is shown for
each curve via an imbedding of the two-dimensional analog in
Qat three-space.

effect of the rotating shell on the inertial frames
increases until finally, as o, approaches rp, the rotation
rate 0 of the inertial frame approaches the shell rotation
rate co,. In other words, in this limit the inertial proper-
ties of space inside the shell no longer depend on the
inertial frames at infinity, but are completely deter-
mined by the shell itself. (Of course, the behavior of
the interior is not completely independent of all the
features of the asymptotic region, since the boundary
condition of asymptotic Qatness enters in an essential
way into the derivation).

A shell of matter of radius equal to its Schwarzschild
radius has often been taken as an idealized cosmological
model of our universe. Our result shows that in such
a model there cannot be a rotation of the local inertial
frame in the center relative to the large masses in the
universe. In this sense our result explains why the
"fixed stars" are indeed fixed in our inertial frame, and
in this sense the result is consistent with Mach's
principle.

A more realistic model of a dynamic universe within
the class of asymptotically Qat spaces would be an
expanding and recollapsing ball of dust. The simplest
features of a slowly rotating dustball are found at the
time of maximum expansion (time of "momentary
stationarity"). Since the 6eld equations relevant to first
order in the rotation rate co„G"=8~P", are initial
value equations, ' the problem can be discussed without
reference to the later time development. The results

A. Lichnerowicz, Theories relativistes de la gravitation et de
l'electromagnetism (Masson et Cie., Paris, 1955);Y.Fourbs-Sruhat,
J. Rat. Mech. Anal. 5, 951 (1956). For a summary, see D. Brill,
Nuovo Cimento Suppl. 2, 1 (1964).
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of the discussion are illustrated in Fig. 2. Again we
consider dustballs of identical total mass but diGerent
radii. As the radii decrease beyond the Schwarzschild
radius (as measured in isotropic coordinates), the
proper volume of the dustball actually increases, and
the interior geometry approaches that of a closed
universe. In the limit of nearly complete closure we
again find that the rotation rate of the ball and the
inertial frame become identical. This result is consistent
with the conjecture that Mach's principle is satisfied
in a closed Friedman universe.

Kruskal's analytic extension'0 of the Schwarzschild
metric represents a solution of the Einstein equations
which is everywhere free from sources. As shown in
Fig. 3, it has two-sheeted spacelike surfaces and shows a
dynamic behavior in time, in particular, a collapse of
the throat region in a finite proper time. One sheet and
its time development correspond to the Schwarzschild
coordinate R=nP range 0(R(~; the other sheet
is a replica of this same geometry joined analytically
to the 6rst.

w
CO

r=o

Fxo. 3. Tyro-dimensional cross-section, 8=~, of curved space-
like surface t=0 of rotating Schwarzschild-Kruskal geometry
imbedded in Qat Euclidean space. The rotation can be discovered
geometrically only by examining the imbedding of this surface
in the four-dimensional clued solution of Einstein's equations.
Here the quantity 0 measuring the rotation (Eq. 29} is indicated
by arrows proportional to the "velocity of rotation, "OR.

Q(oo) =k/(2m)'. (30)

This solution (29) can be extended into the range
0&8&~ without singularity; moreover, a Kruska, l-
type transformation,

To find an analytic continuation of the corresponding
rotating metric, we take the solution of Eq. (20)

Q=kL(2m) '—R-'j (k=K/3). (29)

This differs from solution (22) only by the addition of a
constant

u= e~" L(R/2m) —1j'"cosh(t/4m),
s= e"""L(R/2m) —1jt~g sinh(t/4m),

(31)

0.5
I

l.5

brings the metric into the form (to 6rst order in Q)

dsg= fg(up) (dug dug)+—Rg(u w)dQg

+2ke ""~(Rg+2mR+ (2m)')
X sing& dP(udge vdu)/mR— (32).

Finally the nonvanishing components of the Riemann
tensor are (in the orthonormal frames)

Fro. 2. Ratio of induced rotation 0 to rotation ~ of expanding
and recontracting ball of dust as a function of isotropic coordinate
r, at the moment t =0 of maximum expansion, Curves are plotted
for balls of various radii yo but same total mass as seen by an
observer at in6aity. In the exterior region the physics is the same
as in the corresponding region of Fig. i, but me have chosen a
time scale such that V =1 in order to be able to discuss the transi-
tion to a closed universe. The exterior solution satisfying the
boundary condition (8) is

tg =const X (o'+Sru4+ 10r'n') / {r+a)'.
The equation determining 0 in the interior is obtained by substi-
tuting V=1, and the solution for P of Kq. (4) for a ball of dust,
into Eq. (20). This equation is easily seen to be hoesogezems in
0—w. At ro —+ 0, the exterior dQ/dr goes to zero. The matching
interior solution must therefore approach the unique solution with
vanishing derivative, O—co=0, for small to. For small r0, p is large
and the physical size of the dustball is quite diferent from r&. The
physical shape of the curved space t =0 is shown for each curve
via an imbedding of the two-dimensional analog in Qat three-
space. The limit ro ~ 0 corresponds to vanishing throat radius in
comparison with the size of the dustball, and in this sense is the
limit of a closed universe.

"M. Kruskal, Phys. Rev. 119, 1743 (1960); R. %V. Fuller and
J. A. %heeler, ~bid. 128, 919 (l962}; also see R. H. Boyer and
R. W. Lindquist (to be published).

R"gg = Rtgtg ——R"gg ——R"gg
———2n/Rg,

R"gg= Rgtgt ——4n/Rg,
Rgggg=Ro'gt=E'L1 —(2m/R) j'" sin8/2R4.

Neither Q, nor the Kruskal form of the metric (32),
nor the Riemann tensor show any singularities at
E.=2m. Therefore the solution with rotation can be
analytically extended into nearly the same region as
the Schwarzschild solution. This continuation describes
a, slowly rotating, collapsing Einstein-Rosen bridge, a
geoInetrodynamic model of a slowly rotating body.
In the late collapse stage, when R approaches zero, Q
increases without limit. No matter how small 0 was
initially, it will reach values for which the first-order
approximation ceases to be applicable at the small
but finite value of E k'~'. Thus our analysis does not
permit us to follow the contraction of the rotating
Einstein-Rosen bridge beyond this finite E value, and
we cannot determine whether the rotation pre@cuts the
collapse or not.


