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method. Since both approaches lead to the same result,
the latter procedure will be followed here.

Using F,,'=GuaG,sF o, where F,, is the electromag-
netic field-strength tensor, one obtains

E:o/ =E, ) (34:3.)

E/=(e7"/+/a)(T""E,~BB,), (34b)

E,/=(e7*%/A/a)(T'*E.+BB,), (34c)
and

B,/=B,, (35a)

By'=(¢**/+/a) (T*"*B,+BE) (35b)

B/=(e"?/n/a)(T"*B,—BE,). (35¢)

The transformed fields for the antiparticle can be ob-
tained in a similar manner. Because of the difference be-
tween the matrices Br and By, a different result will be
found. This shows clearly that, according to this
generalization of special relativity, particles and their
antiparticles have different transformation properties.

Notice that, depending upon the sign of §, the trans-
formed electric and magnetic fields will be damped or
augmented by the factor ¢™%/2, This prediction could
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perhaps be checked by using Egs. (34a), (34b), (34c)
and (35a), (35b), (35¢) in the consideration of very
dense and highly energetic plasmas. ‘

VIII. CONCLUSION

Although the theory of relativistic interactions pre-
sented here lies outside the realm of current research,
it appears to be a reasonable generalization of special
relativity. Not only are the predictions of special and
general relativity included as special cases, but also a
host of new effects are predicted, all of which seem to be
within range of present experimental techniques. From
a theoretical point of view, the theory suggests that (a)
classes of elementary particles possess distinct space-
time transformations, (b) the existence of matter and
antimatter is a relativistic effect independent of the
quantum theory, and (c) for strong interactions new
forms of the Dirac and Klein-Gordon equations should
be used.
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An analysis is given of the stress-energy tensor and geometry produced by slowly rotating bodies. The
geometrized mass GM /c? of the body is allowed to be comparable to its radius. The geometry is treated as a
perturbation of the Schwarzschild geometry, which leads to considerable simplification of Einstein’s equa-
tions. The rotation of the intertial frame induced by a rotating massive shell is calculated and discussed with
particular attention to two limiting cases: (1) For small masses it reduces to Thirring’s well-known result;
(2) for large masses, whose Schwarzschild radius approaches the shell radius, the induced rotation approaches
the rotation of the shell. These and the corresponding results for an expanding and recollapsing dust cloud
are examined for their consistency with particular interpretations of Mach’s principle. The analytic ex-
tension of the rotating exterior metric is a completely source-free rotating solution. It describes a slowly
rotating, expanding, and recontracting Einstein-Rosen bridge which can be taken as a geometrodynamic

model for a slowly rotating body.

I. INTRODUCTION

N 1686, Newton! published his famous discussion of
inertial forces on a fluid contained in a rotating
vessel. This discussion was critically re-examined by
Mach? in 1883 in an attempt to understand better how

* Work supported in part by the National Aeronautics and
Space Administration. One of us (D. B.) was a guest of the Para-
psychology Foundation while part of this work was in progress.

1 National Science Foundation Predoctoral Fellow.

' 1. Newton, Mathematical Principles (University of California
Press, Berkeley, California, 1960), p. 10.

*E. Mach, The Science of Mechanics (Open Court Publishing
Company, La Salle, Indiana, 1902), p. 232.

inertial forces arise. He suggested that the shape of the
water-surface may depend on the rotation of the vessel
“if the sides of the vessel increased in thickness and
mass till they were ultimately several leagues thick.”
A calculation of such effects became possible when
Einstein® formulated his general theory of relativity
in 1916, and was carried out in 1918 by Thirring.*
Using the weak-field approximation to Einstein’s
equations, Thirring found that a slowly rotating mass
shell drags along the inertial frames within it. Due to

3 A. Einstein, Ann. Phys. 49, 769 (1916).
+ H. Thirring, Physik. Z. 19, 33 (1918);22, 20 (1921).
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the approximations used, Thirring’s result is valid only
when the induced rotation is small compared to the
rotation rate of the shell. Since that time various
authors® have stressed the importance of obtaining a
strong-field solution, because these induced rotation
effects can be viewed as a manifestation of Mach’s
principle in general relativity.

Today, it is still a matter of controversy how to give a
precise formulation of Mach’s principle, and whether
general relativity includes Mach’s principle, or needs
to be supplemented by boundary conditions, or must
be modified in order to be consistent with this principle.5
However, there is general agreement that the dragging
along of inertial frames by rotating masses is a Machian
effect. In particular, for mass shells comprising more
nearly all the matter in the universe than those treated
by Thirring, Mach’s principle suggests that the inertial
properties of space inside the shell no longer depend
on the inertial frames at infinity, but are completely
determined by the shell itself.

In this paper we study the effect on inertial frames of
arbitrarily large masses rotating slowly. Instead of
flat space, a static metric (“base metric”) is used as the
lowest order term of an approximation expansion in
the angular velocity of rotation w,. A general pertur-
bation away from a static metric would give rise to
various modes of gravitational radiation,® and therefore
show secular effects in higher orders. Here we confine
attention to perturbations of sufficiently high symmetry
that the resulting metric is stationary. Such pertur-
bations exist only for very special base metrics, such
as the spherically symmetric ones considered in this
paper, and axially symmetric metrics in general.

Our model of Newton’s vessel is a spherical shell of
matter. To first order in w, the space inside the shell is
flat, so that extended inertial frames can be defined
there, and compared with the inertial frames at infinity.
By matching this interior solution to an exterior
solution, we will obtain the induced rotation rate @ of
the inertial frames.

The exterior first-order solution itself is of interest,
because it can be analytically continued almost as far
as the Schwarzschild solution can be continued. The
result describes a rotating Einstein-Rosen bridge, a
solution of the source-free equations exhibiting mass

5 See, e.g., R. H. Dicke, in Reativity Groups and Topology
(Gordan and Breach Science Publishers, Inc., New York, 1964);
J. A. Wheeler, sbid.

6 For an example of a general perturbation on a nonflat base
metric, see D. Brill and J. Hartle, Phys. Rev. 135, B271 (1964).
R. Bach, Z. Math. 13, 119 (1922) performed a first- and second-
order perturbation expansion with the Schwarzschild metric as
the base metric. His perturbations correspond to stationary
rotation in the exterior region, and the form of the solution in
first order agrees with the results of the present paper. However,
Bach does not discuss the interior solution and uses Thirring’s
expression to connect the integration constants in the metric
with the parameters of the source. Therefore, the dragging along
of the inertial frame cannot be deduced from his work to any
higher accuracy than from that of Thirring.
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and angular momentum. Just as the analytic extension
of the Schwarzschild solution is no longer static but
shows an expanding and recollapsing throat, the corre-
sponding rotating solution shows a time dependence.
The perturbation increases to infinity as the throat
collapses, and therefore is a valid approximation only
during the expanded stage. Thus the present analysis
cannot answer the question whether rotation will stop
collapse.

II. NONROTATING BASE METRIC

The base metric is the Schwarzschild solution,
written here in isotropic spherical coordinates:

ds*=yA(dr*+r2d6%+? sin*0d¢?) — V2diE. 1

In the exterior, source-free region, ¥ and V have the
form

y=1+a/r,

V=(r—a)/(r+a),
where a=3m. In order to facilitate physical interpre-
tation and to expedite the calculations, the ortho-

normal Cartan frame components of @l tensors will
be used. A convenient set of these frames is

w'="Vdt,
wl=y2dr,
wr=nrY?do,
w*=ny? sinfde.

For any spherically symmetric shell of radius 7o, and
thickness small compared to 7o, the interior is flat
space; the values of ¥ and V are determined by con-
tinuity and the field equation

@

©)

GO= — 4V /YS=8x T, 4)
One finds
a=2r / To2y5dr (5a)
0
=1
y=itafrs } for r<r,. (5b)
V=(ro—a)/ (roete)

III. ROTATING METRIC

Consider the perturbation of the isotropic Schwarzs-
child metric, for a thin massive shell (suggested by
Thirring’s weak field result),

ds*=yA[drt+r2d6>+1? sin®6(dp—Q(r)dt)*]— V. (6)
A convenient orthonormal set of Cartan frames is
?=Vdt,
1—
wl=yr, )
wr=np2do,

wd=n? sinf(dp—Q(r)dt).
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If the metric (6) is transformed to a system rotating
with angular velocity Qo about the Z axis, it has the
form (6) with Q(r) replaced by Q(r) —Qo. Hence we can,
and always will in the following, set

Q(0)=0. (8)

Then Q(r) describes a local rotation of the inertial
frames with respect to infinity.

IV. STRESS-ENERGY TENSOR FOR
THIN SHELL

The distribution of elastic stresses in a nonrotating
shell is completely determined by the Einstein field
equations. Integration of the equation

G1=8xTH" ©)
across the thin shell yields
T1=0. (10)
Integration of the equation
G2=8rT® (11)
across the shell yields
T2=pa/2(ro—a). (12)

Here p is the mass density in the rest frame of an
element of the shell. Similarly we obtain

T8=T2, (13)
since
Vo1 1 11V
- G%:(nﬁz) 1 ‘[W) ] +___|:_1] "
V0 /O ¢ WV PR 4/ WV

where subscript 1 denotes differentiation with respect
tor.

The stress-energy tensor for the same shell when it is
rotating with angular velocity w, has the form

3
Tw=purw+ Y, t9viPogy’.
i=1

(15)

Here p is again the rest mass density, and #* the velocity
four vector, of an element of the shell; the v;* form a
triad of orthonormal vectors spanning the hyper-
surface orthogonal to #*. T* must have this form
because in the rest frame of the matter the momentum
density T should vanish. The Cartan-frame com-
ponents of the velocity four-vector are given by’

uh= [0)”/ d'r]along motion. (16)

7 Computation of four-velocity in Cartan frames. Let the motion
of a particle be described in parametric form, x*=x*(r), where 7 is
the arc length along the path. The holonomic components #g*
of the four-velocity are defined by

upt=dx*/dr. (A)

Let ¢, be the natural basis associated with the coordinate system
and let w, be the orthonormal basis of the Cartan frames. The
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For a spherical shell rotating about the z axis the
expression for #* becomes

W= (1—c?) 12, wl=12=0, w=o/(1—c)",

an

where o=7y?sinf(w,—Q)/V.

For two of the vectors v(;* we choose unit vectors
along the w; and w, directions, which are automatically
orthogonal to each other and to #*; the remaining
vector is then uniquely determined by orthonormality
and the requirement that it be parallel to the third
Cartan basis vector in the limit of no rotation,

vt= (0;190:0) ’
V()= (07071’0) )
V= (0,0,0,1)/ (1—0*)'2.

(18)

Many of the components 7* vanish owing to the reflec-
tion symmetry about the equatorial plane (§— w—6)
and time-reversal symmetry ((— —f, ¢— —,
We—> —w,, 2 — —Q). We conclude that (a) the elastic
stress tensor #/ is diagonal, (b) 7% and 7% are even
functions of w,—, and (c) 7% are odd functions of
w,—Q. Equation}(15) now gives, correct to first order,

T%=p,
T2=2
" (19)
T8=13,
T%= (p+1%)c,
and from the zeroth-order result we have?
2= 8= pa/2(ro—a)=pB (definition of B). (19a)
two are related by some linear transformation
e =wya,” (%), (B)
The four-vector u can now be expressed in two ways:
u=eun*=e,dx*/dr =wa,? (x)dx*/dr =wW". ©)

Comparison of the two expressions yields the Cartan frame
components of the velocity four-vector,

w=a,? (x)dx*/dr. (D)
Since
o (x)dvr =" (E)
we can write Eq. (D) symbolically as
% =["/d7 Jalong motion- €))

Here «” does not have its usual meaning of a differential form
(viz., dual basis to the w,), but is the same expression in terms of
the coordinate differentials. (Alternately, define for each point
four functions f® such that locally df®)=«¥; then #* is the
derivative d f/dr at that point.) Thus we find, for example,

w=u?/dr=ny? sinb (dp —Qdt) /[ Vi —r%y* sin’0 (dp —QdE)?> ]2

=ny? sinf(w,—Q)dt/[1—r¥Y* sin?f (w,—RQ)2/ V212V d},
where we have put d¢/dt=w,.

8 This result shows that Thirring (Ref. 4) was correct in neglect-
ing the elastic stress 7% in the shell to first order in w, for slow
rotation and small masses producing weak gravitational fields.
However, for large masses, #¥ must be large in order to prevent
collapse of the shell, and makes the largest contribution to the

angular momentum of the shell. Also see L. Bass and F. A. E.
Pirani, Phil. Mag. 46, 850 (1955).
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V. THE INDUCED ROTATION

The Einstein equations, evaluated to first order in
ws, for metric (6) and source tensor (19) reduce to
five field equations, four of which are identical with
those for the nonrotating shell. The one remaining field
equation

8rT0=G%= —[ (r¥*Q1/2V) 1+ D) v/ V]
Xsing/nft  (20)

determines Q(7) : for r>7,, p vanishes and the equation
has the first integral

n=KVy*/ ()", (21)
where K is an integration constant. Another inte-
gration, using the boundary condition (8), Q(«)=0,
yields

Q=—K/3(ry?)?® r>r,.

In the interior of the shell, the only regular solution is
constant rotation,

(22)

Q=K' r<r,. (23)
Continuity across the shell requires 4
K'=—K/3(rope)?. (24)

The subscript zero denotes that the quantity is evalu-
ated at the shell where r=r,. Integrating Eq. (20)
across the thin shell yields

+
- / Lr™2/2V )1+ () 1/ V Idr
- +
=8r | [o(1+B)r¥*(w,—)/V]dr. (25)

Here the limits of the region containing” the mass are
denoted by — and +.

The second term of the left integral (25) goes to
zero, and we find

K=—4m(14Bo) ro¢e®)Wo(ws—K")/ V.

Thus @ is completely determined in the exterior and
interior of the shell,

(rop®/rd?)’ews

(26)

, r>10.
Q=11+[3(ro—a)/4m(1+B0)] (27)
ws/ (1+[3(re—a)/4m(1+B0)]), 7<ro.
For small « the result for the interior reduces to
Q=w,(4m/3r0), (28)

in agreement with Thirring’s well-known result.4

V. DISCUSSION

Figure 1 shows a graph of Q(7)/w, for shells of various
radii 7o but identical total shell mass. As the shell mass o
increases compared to the shell radius 7o, the dragging
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A
a=(/2)ro / @
r=2a

Q/wg
8
-]

a=(/3)ry

0 1 | | |
o] | 2 3 4
r/a

F16. 1. Ratio of induced rotation Q of inertial frames to rotation
w, of inducing shell as a function of distance 7 from the center.
Curves are plotted for shells of various radii 7o but the same total
mass. The curves coincide in the exterior region due to this
normalization of total mass. [Note added in proof. These curves
coincide only if the ordinate is multiplied by a suitable factor,
which is different for each curve. The value 1 shown on the ordi-
nate is correct only for the curve labeled & =7,. The correct scale
for the other curves can be obtained from Eq. (27) and the
definition of B9, Eq. (19a). A similar comment applies to Fig. 2.]
In the interior, “perfect dragging” (Q/w,— 1) is obtained in the
limit shell radius — gravitational radius corresponding to shell
mass. The physical shape of the curved space ¢=const is shown for
each curve via an imbedding of the two-dimensional analog in
flat three-space.

effect of the rotating shell on the inertial frames
increases until finally, as a approaches 7o, the rotation
rate Q of the inertial frame approaches the shell rotation
rate w,. In other words, in this limit the inertial proper-
ties of space inside the shell no longer depend on the
inertial frames at infinity, but are completely deter-
mined by the shell itself. (Of course, the behavior of
the interior is not completely independent of all the
features of the asymptotic region, since the boundary
condition of asymptotic flatness enters in an essential
way into the derivation).

A shell of matter of radius equal to its Schwarzschild
radius has often been taken as an idealized cosmological
model of our universe. Our result shows that in such
a model there cannot be a rotation of the local inertial
frame in the center relative to the large masses in the
universe. In this sense our result explains why the
“fixed stars” are indeed fixed in our inertial frame, and
in this sense the result is consistent with Mach’s
principle.

A more realistic model of a dynamic universe within
the class of asymptotically flat spaces would be an
expanding and recollapsing ball of dust. The simplest
features of a slowly rotating dustball are found at the
time of maximum expansion (time of ‘“‘momentary
stationarity”). Since the field equations relevant to first
order in the rotation rate w,, G®=8nrT%, are initial
value equations,® the problem can be discussed without
reference to the later time development. The results

9 A. Lichnerowicz, Théories relativistes de la gravitation et de
Velectromagnetism (Masson et Cie., Paris, 1955) ; Y. Fourgs-Bruhat,

J. Rat. Mech. Anal. 5, 951 (1956). For a summary, see D. Brill,
Nuovo Cimento Suppl. 2, 1 (1964).
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of the discussion are illustrated in Fig. 2. Again we
consider dustballs of identical total mass but different
radii. As the radii decrease beyond the Schwarzschild
radius (as measured in isotropic coordinates), the
proper volume of the dustball actually increases, and
the interior geometry approaches that of a closed
universe. In the limit of nearly complete closure we
again find that the rotation rate of the ball and the
inertial frame become identical. This result is consistent
with the conjecture that Mach’s principle is satisfied
in a closed Friedman universe.

VI. ROTATION IN GEOMETRODYNAMICS

Kruskal’s analytic extension® of the Schwarzschild
metric represents a solution of the Einstein equations
which is everywhere free from sources. As shown in
Fig. 3, it has two-sheeted spacelike surfaces and shows a
dynamic behavior in time, in particular, a collapse of
the throat region in a finite proper time. One sheet and
its time development correspond to the Schwarzschild
coordinate R=rJ? range 0<R< 0 ; the other sheet
is a replica of this same geometry joined analytically
to the first.

Q/w

F16. 2. Ratio of induced rotation Q to rotation w of expanding
and recontracting ball of dust as a function of isotropic coordinate
7, at the moment ¢=0 of maximum expansion. Curves are plotted
for balls of various radii ro but same total mass as seen by an
observer at infinity. In the exterior region the physics is the same
as in the corresponding region of Fig. 1, but we have chosen a
time scale such that V=1 in order to be able to discuss the transi-
tion to a closed universe. The exterior solution satisfying the
boundary condition (8) is

Q=const X (a®+ Srat+107%3) / (r+a)".

The equation determining © in the interior is obtained by substi-
tuting V=1, and the solution for ¢ of Eq. (4) for a ball of dust,
into Eq. (20). This equation is easily seen to be homogeneous in
Q—w. At 70— 0, the exterior d2/dr goes to zero. The matching
interior solution must therefore approach the unique solution with
vanishing derivative, Q—w=0, for small 7o. For small 7o, ¢ is large
and the physical size of the dustball is quite different from 7,. The
physical shape of the curved space =0 is shown for each curve
via an imbedding of the two-dimensional analog in flat three-
space. The limit 7o — O corresponds to vanishing throat radius in
comparison with the size of the dustball, and in this sense is the
limit of a closed universe.

10 M. Kruskal, Phys. Rev. 119, 1743 (1960); R. W. Fuller and
J. A. Wheeler, ¢bid. 128, 919 (1962); also see R. H. Boyer and
R. W. Lindquist (to be published).
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Fi16. 3. Two-dimensional cross-section, =3, of curved space-
like surface t=0 of rotating Schwarzschild-Kruskal geometry
imbedded in flat Euclidean space. The rotation can be discovered
geometrically only by examining the imbedding of this surface
in the four-dimensional curved solution of Einstein’s equations.
Here the quantity Q measuring the rotation (Eq. 29) is indicated
by arrows proportional to the “velocity of rotation,” QR.

To find an analytic continuation of the corresponding
rotating metric, we take the solution of Eq. (20)

Q=k[2m)~—R-¥] (k=K/3). (29)

This differs from solution (22) only by the addition of a
constant
Q(0)=k/(2m)3. (30)

This solution (29) can be extended into the range
0<R< o without singularity; moreover, a Kruskal-
type transformation,

w=eBMm[ (R/2m)— 1742 cosh (t/4m),
v=e®"*m[ (R/2m)— 172 sinh (¢/4m) ,
brings the metric into the form (to first order in Q)
ds?= f2(u,v) (du?— dv®)+ R2 (u,v)dQ?
+2keElm(R22mR+ (2m)?)
X sin®d dp (udv—rvdu)/mR.

(31)

(32)

Finally the nonvanishing components of the Riemann
tensor are (in the orthonormal frames)

R2j5= R¥3= R%3= R%2p,= — 20/ R?,
R3232= Rmol = 40!/R3 )
— R%y= ROy = K[1— (2m/R) ] sinf)/2R%.

Neither @, nor the Kruskal form of the metric (32),
nor the Riemann tensor show any singularities at
R=2m. Therefore the solution with rotation can be
analytically extended into nearly the same region as
the Schwarzschild solution. This continuation describes
a slowly rotating, collapsing Einstein-Rosen bridge, a
geometrodynamic model of a slowly rotating body.
In the late collapse stage, when R approaches zero, Q
increases without limit. No matter how small @ was
initially, it will reach values for which the first-order
approximation ceases to be applicable at the small
but finite value of R~k Thus our analysis does not
permit us to follow the contraction of the rotating
Einstein-Rosen bridge beyond this finite R value, and
we cannot determine whether the rotation prevents the
collapse or not.

(33)



